PySpark Cookbook: Over 60 recipes for implementing big data processing and analytics using Apache Spark and Python

PySpark Cookbook: Over 60 recipes for implementing big data processing and analytics using Apache Spark and Python
PySpark Cookbook: Over 60 recipes for implementing big data processing and analytics using Apache Spark and Python by Denny Lee, Tomasz Drabas
English | 2018 | ISBN: 1788835367 | 330 Pages | True PDF, EPUB | 18 MB

PySpark Cookbook: Over 60 recipes for implementing big data processing and analytics using Apache Spark and Python
Combine the power of Apache Spark and Python to build effective big data applications
Apache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. The PySpark Cookbook presents effective and time-saving recipes for leveraging the power of Python and putting it to use in the Spark ecosystem.
You’ll start by learning the Apache Spark architecture and how to set up a Python environment for Spark. You’ll then get familiar with the modules available in PySpark and start using them effortlessly. In addition to this, you’ll discover how to abstract data with RDDs and DataFrames, and understand the streaming capabilities of PySpark. You’ll then move on to using ML and MLlib in order to solve any problems related to the machine learning capabilities of PySpark and use GraphFrames to solve graph-processing problems. Finally, you will explore how to deploy your applications to the cloud using the spark-submit command.
By the end of this book, you will be able to use the Python API for Apache Spark to solve any problems associated with building data-intensive applications.
What You Will Learn

  • Configure a local instance of PySpark in a virtual environment
  • Install and configure Jupyter in local and multi-node environments
  • Create DataFrames from JSON and a dictionary using pyspark.sql
  • Explore regression and clustering models available in the ML module
  • Use DataFrames to transform data used for modeling
  • Connect to PubNub and perform aggregations on streams