Hands-On Data Analysis with Pandas: Efficiently perform data collection, wrangling, analysis, and visualization using Python

Hands-On Data Analysis with Pandas: Efficiently perform data collection, wrangling, analysis, and visualization using Python
Hands-On Data Analysis with Pandas: Efficiently perform data collection, wrangling, analysis, and visualization using Python by Stefanie Molin
English | 2019 | ISBN: 1789615326 | 716 Pages | EPUB | 20 MB

Get to grips with pandas-a versatile and high-performance Python library for data manipulation, analysis, and discovery
Data analysis has become a necessary skill in a variety of positions where knowing how to work with data and extract insights can generate great value for companies.
This book will show you how to analyze your data and get started with machine learning in Python using the powerful pandas library. We will extend pandas offerings with other Python libraries such as matplotlib, NumPy, and scikit-learn to perform each phase and operation of data analysis tasks. You will learn data wrangling, how to manipulate your data, clean it, visualize it, find patterns, and make predictions based on the past data using real-world examples. You will learn how to conduct data analysis, and then take our analyses a step further as we explore some applications of anomaly detection, regression, clustering, and classification.
Towards the end of the book, you will be able to use pandas to ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets.
What you will learn

  • Understand how data analysts and scientists think about gathering and understanding data
  • Perform data analysis and data wrangling in Python
  • Combine, grouping, and aggregating data from multiple sources
  • Create data visualizations with pandas and matplotlib
  • Learn how to apply machine learning algorithms to make predictions and look for patterns.
  • Use Python Data Science libraries to analyze real-world datasets.
  • Use pandas to solve several common data representation and analysis problems